AP Calculus Summer Packet Mrs. Russell's Class

Please complete the following problems BEFORE your first day of AB Calculus . If you have any questions, contact Mrs. Russell at <u>amanda.russell@maryville-schools.org</u>

Formula Sheet

Reciprocal Identities:	$\csc x = \frac{1}{\sin x}$	$\sec x = \frac{1}{\cos x}$	$\cot x = \frac{1}{\tan x}$
Quotient Identities:	$\tan x = \frac{\sin x}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$	
Pythagorean Identities:	$\sin^2 x + \cos^2 x = 1$	$\tan^2 x + 1 = \sec^2 x$	$1 + \cot^2 x = \csc^2 x$
Double Angle Identities:	$\sin 2x = 2\sin x \cos x$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	cos 2 <i>3</i>	$x = \cos^2 x - \sin^2 x$ $= 1 - 2\sin^2 x$ $= 2\cos^2 x - 1$
Logarithms:	$y = \log_a x$ is equiv	alent to $x = a^{y}$	
Product property:	$\log_b mn = \log_b m + \log_b$	$g_b n$	
Quotient property:	$\log_b \frac{m}{n} = \log_b m - \log_b m$	$\mathbf{g}_b \mathbf{n}$	
Power property:	$\log_b m^p = p \log_b m$		
Property of equality:	If $\log_b m = \log_b n$, the	en m = n	
Change of base formula:	$\log_a n = \frac{\log_b n}{\log_b a}$		
Derivative of a Function:	Slope of a tangent lin	e to a curve or the deri	varive: $\lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$
<u>Slope-intercept form</u> : $y = mx + b$			
<u>Point-slope form</u> : $y - y_1 = m(x - x_1)$			
Standard form: $Ax + By + C = 0$			

I. <u>Complex Fractions</u>

When simplifying complex fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common denominator of all the denominators in the complex fraction.

Worked out examplex:

$$\frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} g_{x+1}^{x+1} = \frac{-7x - 7 - 6}{5} = \frac{-7x - 13}{5}$$

$$\frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} = \frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} g_{x(x-4)}^{x(x-4)} = \frac{-2(x-4) + 3x(x)}{5(x)(x-4) - 1(x)} = \frac{-2x + 8 + 3x^{2}}{5x^{2} - 20x - x} = \frac{3x^{2} - 2x + 8}{5x^{2} - 21x}$$

Simplify each of the following.

1.
$$\frac{\frac{25}{a}-a}{5+a}$$

2. $\frac{4-\frac{12}{2x-3}}{5+\frac{15}{2x-3}}$
3. $\frac{\frac{x}{x+1}-\frac{1}{x}}{\frac{x}{x+1}+\frac{1}{x}}$

II. Functions

To evaluate a function for a given value, simply plug the value into the function for x. f(g(x)) = f(x-4) $= 2(x-4)^2 + 1$ $= 2(x^2 - 8x + 16) + 1$ $= 2x^2 - 16x + 32 + 1$ $f(g(x)) = 2x^2 - 16x + 33$ Let f(x) = 2x + 1 and $g(x) = 2x^2 - 1$. Find each. 4. g(-3) =_____ 5. f(t+1) =_____

6.
$$f[g(-2)] =$$

7.
$$g[f(m+2)] =$$
 8. $\frac{f(x+h) - f(x)}{h} =$

Find
$$\frac{f(x+h) - f(x)}{h}$$
 for the given function *f*.
9. $f(x) = 9x + 3$ 10. $f(x) = 5 - 2x^2$

III. Intercepts and Points of Intersection

To find the x-intercepts, let y = 0 in your equation and solve. To find the y-intercepts, let x = 0 in your equation and solve. **Example:** $y = x^2 - 2x - 3$ $\frac{x - \text{int. } (Let \ y = 0)}{0 = x^2 - 2x - 3}$ 0 = (x - 3)(x + 1) $x = -1 \ or \ x = 3$ $x - \text{intercepts } (-1, 0) \ and \ (3, 0)$ $\frac{y - \text{int. } (Let \ x = 0)}{y = 0^2 - 2(0) - 3}$ y = -3y - intercept (0, -3)

Find the x and y intercepts for each.

11. $y = x^2 + x - 2$ 12. $y^2 = x^3 - 4x$

Find the point(s) of intersection of the graphs for the given equations. (hint: use substitution and/or elimination)

13.
$$\begin{aligned} x^2 + y &= 6\\ x + y &= 4 \end{aligned}$$
 14.
$$\begin{aligned} x^2 - 4y^2 - 20x - 64y - 172 &= 0\\ 16x^2 + 4y^2 - 320x + 64y + 1600 &= 0 \end{aligned}$$

IV. Interval Notation

15. Complete the table with the appropriate notation or graph.

Solution	Interval Notation	Graph
$-2 < x \le 4$		
	[-1,7]	
		∢ ————————————————————————————————————

V. Domain and Range

Find the domain and range of each function. Write your answer in INTERVAL notation.

16.
$$f(x) = x^2 - 5$$
 17. $f(x) = -\sqrt{x+3}$ 18. $f(x) = 3\sin x$ 19. $f(x) = \frac{2}{x-1}$

VI. Inverses

To find the inverse of a function, simply switch the x and the y and solve for the new "y" value. **Example:**

Rewrite $f(x)$ as y
Switch x and y
Solve for your new y
Cube both sides
Simplify
Solve for y
Rewrite in inverse notation

Find the inverse for each function.

20.
$$f(x) = 2x + 1$$
 21. $f(x) = \frac{x^2}{3}$

Also, recall that to PROVE one function is an inverse of another function, you need to show that: f(g(x)) = g(f(x)) = x

Prove *f* and *g* are inverses of each other.

22.
$$f(x) = \frac{x^3}{2}$$
 $g(x) = \sqrt[3]{2x}$
23. $f(x) = 9 - x^2, x \ge 0$ $g(x) = \sqrt{9 - x}$

VII. Equation of a line

Slope intercept form: y = mx + bVertical line: x = c (slope is undefined)Point-slope form: $y - y_1 = m(x - x_1)$ Horizontal line: y = c (slope is 0)

24. Determine the equation of a line passing through the point (5, -3) with an undefined slope.

25. Determine the equation of a line passing through the point (-4, 2) with a slope of 0.

26. Find the equation of a line passing through the point (2, 8) and parallel to the line $y = \frac{5}{6}x - 1$.

27. Find the equation of a line perpendicular to the y- axis passing through the point (4, 7).

28. Find the equation of a line with an x-intercept (2, 0) and a y-intercept (0, 3).

VIII. Trigonometry Radian and Degree Measure

Use $\frac{180^{\circ}}{\pi radians}$ to get rid of radians and	Use $\frac{\pi radians}{180^{\circ}}$ to get rid of degrees and
convert to degrees.	convert to radians.

29. Convert to degrees: a.
$$\frac{5\pi}{6}$$
 b. $\frac{4\pi}{5}$ c. 2.63 radians

30. Convert to radians:	a. 45°	b. −17°	c. 237°
-------------------------	--------	---------	---------

Angles in Standard Position

31. Sketch the angle in standard position.

11π	1 2200	5π	1 1 0 1
a. <u>6</u>	b. 230°	c. $-\frac{1}{3}$	d. 1.8 radians

Reference Triangles

32. Sketch the angle in standard position. Draw the reference triangle and label the sides, if possible.

e.)
$$\cos 360^{\circ}$$
 f.) $\cos(-\pi)$

Graphing Trig Functions

Graph two complete periods of the function.

34.
$$f(x) = 5 \sin x$$
 35. $f(x) = \sin 2x$

36.
$$f(x) = -\cos\left(x - \frac{\pi}{4}\right)$$
 37. $f(x) = \cos x - 3$

Trigonometric Equations:

Solve each of the equations for $0 \le x < 2\pi$. Isolate the variable, sketch a reference triangle, find all the solutions within the given domain, $0 \le x < 2\pi$. Remember to double the domain when solving for a double angle. Use trig identities, if needed, to rewrite the trig functions. (See formula sheet at the end of the packet.)

38.
$$\sin x = -\frac{1}{2}$$
 39. $2\cos x = \sqrt{3}$ 40. $\cos 2x = \frac{1}{\sqrt{2}}$

41.
$$\sin^2 x = \frac{1}{2}$$
 42. $\sin 2x = -\frac{\sqrt{3}}{2}$

44. $4\cos^2 x - 3 = 0$ 45. $\sin^2 x + \cos 2x - \cos x = 0$

Inverse Trigonometric Functions:

This means the reference angle is 30° or $\frac{\pi}{6}$. So, $y = -\frac{\pi}{6}$ so that it falls in the interval from $\frac{-\pi}{2} < y < \frac{\pi}{2}$ Answer: $y = -\frac{\pi}{6}$

For each of the following, express the value for "y" in radians.

—

46.
$$y = \arcsin \frac{-\sqrt{3}}{2}$$
 47. $y = \arccos(-1)$ 48. $y = \arctan(-1)$

IX. Circles and Ellipses

For a circle centered at the origin, the equation is $x^2 + y^2 = r^2$, where **r** is the radius of the circle. For an ellipse centered at the origin, the equation is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where **a** is the distance from the center to the ellipse along the x-axis and **b** is the distance from the center to the ellipse along the y-axis. If the larger number is under the y^2 term, the ellipse is elongated along the y-axis. For our purposes in Calculus, you will not

need to locate the foci.

Graph the circles and ellipses below:

X. Limits

Please watch the video below to preview limits for Calculus:

https://www.youtube.com/watch?v=ic98OGm-v3I