AP Calculus Summer Packet

Mrs. Russell's Class
Please complete the following problems BEFORE your first day of AB Calculus. If you have any questions, contact Mrs. Russell at amanda.russell@maryville-schools.org

Formula Sheet

Reciprocal Identities: $\quad \csc x=\frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \cot x=\frac{1}{\tan x}$
Quotient Identities: $\quad \tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}$
Pythagorean Identities: $\quad \sin ^{2} x+\cos ^{2} x=1 \quad \tan ^{2} x+1=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x$

Double Angle Identities: $\quad \sin 2 x=2 \sin x \cos x$

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =1-2 \sin ^{2} x \\
& =2 \cos ^{2} x-1
\end{aligned}
$$

Logarithms:

$$
y=\log _{a} x \quad \text { is equivalent to } \quad x=a^{y}
$$

Product property: $\quad \log _{b} m n=\log _{b} m+\log _{b} n$

Quotient property: $\quad \log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$

Power property: $\quad \log _{b} m^{p}=p \log _{b} m$
Property of equality: If $\log _{b} m=\log _{b} n$, then $\mathrm{m}=\mathrm{n}$
Change of base formula: $\quad \log _{a} n=\frac{\log _{b} n}{\log _{b} a}$
Derivative of a Function: Slope of a tangent line to a curve or the derivative: $\lim _{h \rightarrow \infty} \frac{f(x+h)-f(x)}{h}$
Slope-intercept form: $y=m x+b$

Point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$
Standard form:

$$
A x+B y+C=0
$$

I. Complex Fractions

When simplifying complex fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common denominator of all the denominators in the complex fraction.

Worked out examplex:

$$
\frac{-7-\frac{6}{x+1}}{\frac{5}{x+1}}=\frac{-7-\frac{6}{x+1}}{\frac{5}{x+1}} \mathrm{~g} \frac{x+1}{x+1}=\frac{-7 x-7-6}{5}=\frac{-7 x-13}{5}
$$

$$
\frac{\frac{-2}{x}+\frac{3 x}{x-4}}{5-\frac{1}{x-4}}=\frac{\frac{-2}{x}+\frac{3 x}{x-4}}{5-\frac{1}{x-4}} \mathrm{~g} \frac{x(x-4)}{x(x-4)}=\frac{-2(x-4)+3 x(x)}{5(x)(x-4)-1(x)}=\frac{-2 x+8+3 x^{2}}{5 x^{2}-20 x-x}=\frac{3 x^{2}-2 x+8}{5 x^{2}-21 x}
$$

Simplify each of the following.

1. $\frac{\frac{25}{a}-a}{5+a}$
2. $\frac{4-\frac{12}{2 x-3}}{5+\frac{15}{2 x-3}}$
3. $\frac{\frac{x}{x+1}-\frac{1}{x}}{\frac{x}{x+1}+\frac{1}{x}}$

II. Functions

To evaluate a function for a given value, simply plug the value into the function for \mathbf{x}.
$f(g(x))=f(x-4)$

$$
=2(x-4)^{2}+1
$$

$$
=2\left(x^{2}-8 x+16\right)+1
$$

$$
=2 x^{2}-16 x+32+1
$$

$f(g(x))=2 x^{2}-16 x+33$

Let $f(x)=2 x+1$ and $g(x)=2 x^{2}-1$. Find each.
4. $g(-3)=$ \qquad
5. $f(t+1)=$ \qquad
6. $f[g(-2)]=$ \qquad
7. $g[f(m+2)]=$ \qquad
8. $\frac{f(x+h)-f(x)}{h}=$ \qquad

Find $\frac{f(x+h)-f(x)}{h}$ for the given function \boldsymbol{f}.
9. $f(x)=9 x+3$
10. $f(x)=5-2 x^{2}$

III. Intercepts and Points of Intersection

To find the x -intercepts, let $\mathrm{y}=0$ in your equation and solve.
To find the y -intercepts, let $\mathrm{x}=0$ in your equation and solve.
Example: $y=x^{2}-2 x-3$
$\frac{x-\text { int. }(\text { Let } y=0)}{0=x^{2}-2 x-3}$
$0=(x-3)(x+1)$
$x=-1$ or $x=3$
$x-$ intercepts $(-1,0)$ and $(3,0)$

$$
\begin{aligned}
& \frac{y-\text { int. }(\text { Let } x=0)}{y=0^{2}-2(0)-3} \\
& y=-3 \\
& y-\text { intercept }(0,-3)
\end{aligned}
$$

Find the x and y intercepts for each.
11. $y=x^{2}+x-2$
12. $y^{2}=x^{3}-4 x$

Find the point(s) of intersection of the graphs for the given equations. (hint: use substitution and/or elimination)
13. $x^{2}+y=6$
14. $\begin{aligned} & x^{2}-4 y^{2}-20 x-64 y-172=0 \\ & 16 x^{2}+4 y^{2}-320 x+64 y+1600=0\end{aligned}$
IV. Interval Notation
15. Complete the table with the appropriate notation or graph.

Solution	Interval Notation	Graph
$-2<x \leq 4$		
	$[-1,7)$	
		$\boxed{8}$

V. Domain and Range

Find the domain and range of each function. Write your answer in INTERVAL notation.
16. $f(x)=x^{2}-5$
17. $f(x)=-\sqrt{x+3}$
18. $f(x)=3 \sin x$
19. $f(x)=\frac{2}{x-1}$

VI. Inverses

To find the inverse of a function, simply switch the x and the y and solve for the new " y " value. Example:

$$
\begin{array}{ll}
f(x)=\sqrt[3]{x+1} & \text { Rewrite } \mathrm{f}(\mathrm{x}) \text { as } \mathrm{y} \\
\mathrm{y}=\sqrt[3]{x+1} & \text { Switch } \mathrm{x} \text { and } \mathrm{y} \\
\mathrm{x}=\sqrt[3]{y+1} & \text { Solve for your new } \mathrm{y} \\
(x)^{3}=(\sqrt[3]{y+1})^{3} & \text { Cube both sides } \\
x^{3}=y+1 & \text { Simplify } \\
y=x^{3}-1 & \text { Solve for } \mathrm{y} \\
f^{-1}(x)=x^{3}-1 & \text { Rewrite in inverse notation }
\end{array}
$$

Find the inverse for each function.
20. $f(x)=2 x+1$
21. $f(x)=\frac{x^{2}}{3}$

Also, recall that to PROVE one function is an inverse of another function, you need to show that: $f(g(x))=g(f(x))=x$

Prove \boldsymbol{f} and \boldsymbol{g} are inverses of each other.
22. $f(x)=\frac{x^{3}}{2} \quad g(x)=\sqrt[3]{2 x}$
23. $f(x)=9-x^{2}, x \geq 0 \quad g(x)=\sqrt{9-x}$

VII. Equation of a line

Slope intercept form: $y=m x+b$
Vertical line: $x=c \quad$ (slope is undefined)
Point-slope form: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Horizontal line: $\mathrm{y}=\mathrm{c}$ (slope is 0)
24. Determine the equation of a line passing through the point $(5,-3)$ with an undefined slope.
25. Determine the equation of a line passing through the point $(-4,2)$ with a slope of 0 .
26. Find the equation of a line passing through the point $(2,8)$ and parallel to the line $y=\frac{5}{6} x-1$.
27. Find the equation of a line perpendicular to the y - axis passing through the point $(4,7)$.
28. Find the equation of a line with an x-intercept $(2,0)$ and a y-intercept $(0,3)$.

VIII. Trigonometry

Radian and Degree Measure

$\begin{array}{ll}\text { Use } \frac{180^{\circ}}{\pi \text { radians }} \text { to get rid of radians and } & \text { Use } \frac{\pi \text { radians }}{180^{\circ}} \text { to get rid of degrees and } \\ \text { convert to degrees. } & \text { convert to radians. }\end{array}$
29. Convert to degrees:
a. $\frac{5 \pi}{6}$
b. $\frac{4 \pi}{5}$
c. 2.63 radians
30. Convert to radians:
a. 45°
b. -17°
c. 237°

Angles in Standard Position

31. Sketch the angle in standard position.
a. $\frac{11 \pi}{6}$
b. 230°
c. $-\frac{5 \pi}{3}$
d. 1.8 radians

Reference Triangles

32. Sketch the angle in standard position. Draw the reference triangle and label the sides, if possible.
a. $\frac{2}{3} \pi$
b. 225°
c. $-\frac{\pi}{4}$
d. 30°

Unit Circle

You can determine the sine or cosine of a quadrantal angle by using the unit circle. The x-coordinate of the circle is the cosine and the y-coordinate is the sine of the angle.

$$
\text { Example: } \sin 90^{\circ}=1 \quad \cos \frac{\pi}{2}=0
$$

33.

a.) $\sin 180^{\circ}$
b.) $\cos 270^{\circ}$

e.) $\cos 360^{\circ}$
f.) $\cos (-\pi)$

Graphing Trig Functions

$y=\sin x$ and $y=\cos x$ have a period of 2π and an amplitude of 1 . Use the parent graphs above to help you sketch a graph of the functions below. For $f(x)=A \sin (B x+C)+K, \mathrm{~A}=$ amplitude, $\frac{2 \pi}{B}=$ period, $\frac{C}{B}=$ phase shift (positive C / B shift left, negative C / B shift right) and $\mathrm{K}=$ vertical shift.

Graph two complete periods of the function.

34. $f(x)=5 \sin x$
35. $f(x)=\sin 2 x$
36. $f(x)=-\cos \left(x-\frac{\pi}{4}\right)$
37. $f(x)=\cos x-3$

Trigonometric Equations:

Solve each of the equations for $0 \leq x<2 \pi$. Isolate the variable, sketch a reference triangle, find all the solutions within the given domain, $0 \leq x<2 \pi$. Remember to double the domain when solving for a double angle. Use trig identities, if needed, to rewrite the trig functions. (See formula sheet at the end of the packet.)
38. $\sin x=-\frac{1}{2}$
39. $2 \cos x=\sqrt{3}$
40. $\cos 2 x=\frac{1}{\sqrt{2}}$
41. $\sin ^{2} x=\frac{1}{2}$
42. $\sin 2 x=-\frac{\sqrt{3}}{2}$
43. $2 \cos ^{2} x-1-\cos x=0$
44. $4 \cos ^{2} x-3=0$
45. $\sin ^{2} x+\cos 2 x-\cos x=0$

Inverse Trigonometric Functions:
Recall: Inverse Trig Functions can be written in one of ways: $\arcsin (x) \quad \sin ^{-1}(x)$
Inverse trig functions are defined only in the quadrants as indicated below due to their restricted domains.

Example:

Express the value of " y " in radians.
$y=\arctan \frac{-1}{\sqrt{3}} \quad$ Draw a reference triangle.

This means the reference angle is 30° or $\frac{\pi}{6}$. So, $y=-\frac{\pi}{6}$ so that it falls in the interval from

$$
\frac{-\pi}{2}<y<\frac{\pi}{2} \quad \text { Answer: } \mathrm{y}=-\frac{\pi}{6}
$$

For each of the following, express the value for " y " in radians.
46. $y=\arcsin \frac{-\sqrt{3}}{2}$
47. $y=\arccos (-1)$
48. $y=\arctan (-1)$

Example: Find the value without a calculator.
$\cos \left(\arctan \frac{5}{6}\right)$

Draw the reference triangle in the correct quadrant first.
Find the missing side using Pythagorean Thm.
Find the ratio of the cosine of the reference triangle.

$$
\cos \theta=\frac{6}{\sqrt{61}}
$$

For each of the following give the value without a calculator.
49. $\tan \left(\arccos \frac{2}{3}\right)$
50. $\sec \left(\sin ^{-1} \frac{12}{13}\right)$
51. $\sin \left(\arctan \frac{12}{5}\right)$
52. $\sin \left(\sin ^{-1} \frac{7}{8}\right)$

IX. Circles and Ellipses

For a circle centered at the origin, the equation is $x^{2}+y^{2}=r^{2}$, where \mathbf{r} is the radius of the circle.
For an ellipse centered at the origin, the equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where \mathbf{a} is the distance from the center to the ellipse along the \mathbf{x}-axis and \mathbf{b} is the distance from the center to the ellipse along the y -axis. If the larger number is under the y^{2} term, the ellipse is elongated along the y-axis. For our purposes in Calculus, you will not need to locate the foci.

Graph the circles and ellipses below:

67. $x^{2}+y^{2}=16$

68. $x^{2}+y^{2}=5$

69. $\frac{x^{2}}{1}+\frac{y^{2}}{9}=1$

70. $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$

X. Limits

Please watch the video below to preview limits for Calculus:
https://www.youtube.com/watch?v=ic980Gm-v3I

